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Towards better excess mortality measurements:

Mortality’s natural variability


André Redert, PhD

Independent researcher


Rodotti, Netherlands, 5 May 2023


Abstract 
This report investigates the natural variability of mortality, which determines the thin line between 
excesses and normal variation within expectations. I propose a model for mortality’s weekly 
variability based on a Poisson model, driven by potential non-stationary influences that act 
nation-wide and fast, on time scales of a week.

	 Results reveal the presence of a significant amount of non-stationary influences that add to 
mortality’s weekly variability, with a magnitude of 3%±1% (1% - 5% with 95% confidence) times 
baseline mortality, on top of the standard (Poisson) variability. This additional variability is 
consistently found across 30 European countries (462M people) during 2017-2019. A long-term 
analysis in The Netherlands (17M people) reveals the same variability between 2010-2019, with 
substantial increase since 2020 to approx. 5%. Mortality variance may thus very well itself be 
used as event indicator when variability is higher than expected.

	 The findings in this report are relevant for all models of mortality and its variability in general, 
and in particular for developments towards better excess mortality measurements. The additional 
variability found scales with both baseline mortality and population size in a different way 
compared to Poisson variability. For a typical mortality baseline of approx. 0.02% per week, the 
additional variability becomes dominant in populations above approximately 5M people.

	 A number of causes for the variability found are suggested, of which the most promising, 
temperature, will be investigated in a follow-up to this report.


Statement of Interest 
I declare that this work was done with an interest in science, and personal safety for myself, loved 
ones, and humanity. Pro bono, independent, without payroll, not funded. The only competing 
interest was time taken from my normal job (indy app developer in entertainment and music). If 
you want to support my work, feel free to buymeacoffee.com/AndreRedert, or consider one of   
the apps at rodotti.nl and qneo.net.


1. Introduction 
Recently, excess mortality has risen sharply in many countries around the world, and a substantial 
part of the excess still has an unknown cause. An essential step in finding the cause is to 
determine excess mortality in the first place. Excess is defined as observed mortality minus 
expected mortality, and the latter depends on models that predict mortality based on mortality 
and/or other types of available data. National institutes typically provide a yearly mortality 
prediction, the “baseline”, based on statistics of observed mortality in a few past years [Cbs1], 
aided by more complex long-term models that involve state and expected evolution of 
demographics, wellfare, etc [Sto].

	 A major issue with national baselines is that they are highly subjective [Lev]. In the context of 
excess mortality, there clearly is a need for a more objective mortality model. At the same time, 
other requirements for a baseline are less relevant, e.g. there is no need for forecasting as excess 
mortality itself requires observing actual mortality.
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	 In The Netherlands, several excess mortality analyses have recently been made that are 
independent of national baselines, each with its own subjectivity. A geographically-differential 
analysis was used in [Re1] which additional applied a z-score still based on a past year, a 
temporal-differential analysis effectively defined a baseline via short-term past and future near the 
present [Re2], and a fixed baseline in combination with a Poisson model was used throughout a 
short analysis period [Mee].

	 Besides a magnitude, a baseline has also an interval around it defining the variability that is 
considered normal, or non-excess. The interval is either determined via statistics on past years, or 
by a model such as Poisson models [Poi] that provide a direct, fixed connection between 
magnitude and interval. This model’s main assumption, independence of mortality among people 
in a population, is highly plausible: Physical bodies of separate people are not interconnected, 
and the final events in a death process occur locally, within a single body, independent of other 
people. This independent part of mortality is reflected very well by the Poisson model.

	 Before death, however, people are connected in various ways. A local causal effect between 
people is that observing death results in mourning and fear, causing stress and subsequent 
deaths and thus dependencies within e.g. families, neighbours and care-homes. Also, local 
outbreaks of contagious diseases may cause correlated mortality within care-homes and 
hospitals. Such and other causal effects are beyond the Poisson model, but local effects do not 
aggregate strongly on a national level, and can thus be neglected for nations with a substantial 
population.

	 A confounding effect in a population is that people do share certain aspects on national scale. 
For example, staffing in hospitals is better during day-than-night and week-than-weekend, 
causing patients to experience a shared daily/weekly mortality rate. The strongest such 
confounders may come from nation-wide shared influences as news, weather, etc. Such effects 
cause additional variability on the fine temporal scale of days or weeks.

	 This report is one step towards a better method for determining excess mortality, and 
investigates the natural variability of mortality rather than its magnitude, focusing on the difference  
between excesses and normal variation within expectations. This work is motivated by a 
preliminary observation that weekly mortality consistently exhibited substantially higher variability 
over time than can be explained by a Poisson model only. This suggests that some common 
cause affects entire populations in a fast and coordinated way, in contrast with regular seasonal 
effects that act over months. Many phenomena are candidates for this common cause, e.g. news, 
and weather/environmental aspects as rainfall/humidity, sun-hours, air quality etc. In a further 
report, I will investigate temperature as proximal cause (it may typically act as a catalyst for other 
causes), as it seems the most promising: it is the main element in seasonal and heat-wave 
mortality, is known to vary strongly on daily basis, and has been shown to affect mortality 
instantaneously (within 0-3 days) in the case of extreme heat [Xia].

	 Next follow my model for mortality variability, experiments that measure its parameters , and a 
conclusion. The experiments involve populations of The Netherlands (17M people), one of its 
municipalities Rotterdam (0.6M), and 30 European countries (462M), over years 2010-2023.


2. Mortality variability model 
In this section I propose a simple model for mortality’s weekly variability based on generic 
stochastic modeling and sources of additional variability that act on different time-scales.


2.1 Poisson model 
An often used model for a population’s mortality is the Poisson model [Poi]. It has a single 
parameter  that equals both absolute mortality’s mean and variance within a specific period. The 
Poisson distribution is very well approximated by a normal distribution, which will ease my 
analysis:


λ
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	 (1)


	 Integer number indicating a unit time period, in this report a week

	 Absolute mortality in week 


	 Poisson parameter 

	 Zero-mean, unity-variance uncorrelated stationary normal-distributed process


For mortality’s mean and (standard) deviation, one finds trivially:


	 (2)


Vice versa, this enables easy estimation of paramater  from mortality observations . 
Alternatively, overall considerations may be used, e.g. if people live about 100 years, on average 
about of the population will die per week, leading to:


	 (3)


	 Proportion of population that dies per week, typically ~ 0.02%

	 Population size


The Poisson model’s mathematical property  originates from the mechanical assumption 
that the probability of death for each person is independent of that of other persons. Even if every 
person has its own specific probability (  for person ), the mortality within the entire population, 
or any subpopulation, will adhere to a Poisson model with some  reflecting the overall properties 
of that population (with the population’s  the mean of all personal ’s).

	 The independence assumption sounds highly plausible, but should be treated with care. It is 
true that the physical bodies of separate people are not interconnected, and that the final events 
in a death process occur locally, within a single body, independent of other people. This 
independent part of mortality is reflected very well by the Poisson model.


2.2 Non-stationary model 
Before death, people are connected in various ways. A local causal effect between people is that 
observed deaths instill mourning and fear, causing stress and subsequent deaths and thus 
dependencies within e.g. families, neighbours and care-homes. Causal effects are incompatible 
with the Poisson model, but local effects do not aggregate strongly on a national level, and can  
thus safely be neglected.

	 A confounding effect in a population is that any time up to the moment of death, people share 
local environments, e.g. staffing in hospitals is better during day-than-night and week-than-
weekend, causing patients to experience a shared daily/weekly mortality rate. The strongest such 
confounder comes from the population-wide shared environment as news, weather, etc, of which 
the seasonal effect is the most common. These confounders act via the population-shared ; the 
Poisson model is still very well applicable but becomes so-called non-stationary, with time-
dependent , see Figure 1.


M(t) = λ + λ𝒩(t)

t
M(t) t
λ
𝒩(t)

μM = λ

σM = λ

λ M(t)
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λ = βP

β
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β βi
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Figure 1: An illustration of how observed mortality (red circles) originates from Poisson noise (grey) 
around a baseline (black) that has slow, long-term (monthly or more) variability e.g. due to seasons, 
and possible additional fast, short-term (monthly down to time resolution: weekly) variability via 
some yet unidentified additional, external cause.


2.3 Decomposition of variability by time scale 
I decompose  into two complementary parts, a global baseline  that varies slowly over 
months or more, and everything else as . The  will automatically, by complement, be 
zero-mean and vary fast, in time frames of a week (the resolution used in this report) to at most a 
month:


	 (4)


	 Baseline, slowly changing on long-term (monthly), due to e.g. seasons

	 All short-term additional variability in , from monthly down to time resolution (weekly)


	 Temporal convolution

	 Smooth time-symmetric averaging filter, Gaussian-shaped with deviation of ±3 weeks


This decomposition is without any model assumptions or restrictive modeling; it is just an identity, 
for any filter . I chose a specific filter that ensures monthly variations in  will be collected in 
baseline , while fast weekly variations will end up in the complement . The  
represents variability from any possible additional nature.


2.4 Model for fast variability 
In order to be able to measure anything meaningful about , a restrictive model is needed, 
otherwise the amount of freedom in  will equal or surpass that of observations  leading to  
underdetermination. I model  as follows:


	 (5)


	 Magnitude of additional mortality variability , itself slow-changing as baseline 

	 Same as in (1), note all appearing ’s are separate, independent random variables


λ(t) b(t)
b̄(t) b̄(t)

λ(t) = b(t) + b̄(t)
b(t) = {F * λ}(t)
b̄(t) = λ(t) − b(t)

b(t)
b̄(t) λ(t)
*
F

F λ(t)
b(t) b̄(t) b̄(t)

λ(t)
λ(t) M(t)

b̄(t)

b̄(t) = r (t)𝒩(t)

r (t) b̄(t) b(t)
𝒩(t) 𝒩

 of 4 12



The fact that both  and  are modeled as slow-changing, on time frames of at least a 
month, ensures that weekly observations  will suffice for estimation of model parameters 

 and .


2.5 Combined variability 
For mortality, the net result of (1) and (4)-(5) is (with the two random terms indicated by equation 
number in subscript):


	 (6)


The last term in the top row volves a complex product of the two random variables. Assuming 
, that is, the additional mortality variability is substantially smaller than baseline mortality 

level, the product term can be neglected and one arrives at the bottom equation with only one 
random term with a magnitude combining  and .


2.6 Equivalent model normalized by population 
The same model with parameters normalized by population is:


	 (7)


where  are the per-population versions of . In (7), both  and  have become 
time-dependent compared to (3). For analysis periods covering less than a few years,  may 
well be taken as constant. The two terms in the square root that regulate mortality variance differ 
by a factor .

	 It may be that a source of additional variability  exist that, like , has the property of being 
reasonably constant across different populations. Then, for sufficiently small populations the  
term associated with Poisson noise may dominate, but for larger populations, the  term 
associated with additional variability will inevitably take over at some point.


2.7 Estimation of parameters from mortality observations 
Estimation of model parameters  (or ) over time can be done via mortality’s local mean 

 and deviation  near time :


	 (8)


b(t) r (t)
M(t)

b(t) r (t)

M(t) = b(t) + r (t)𝒩(5)(t) + b(t) + r (t)𝒩(5)(t)𝒩(1)(t)

≈ b(t) + r (t)𝒩(5)(t) + b(t)𝒩(1)(t)

= b(t) + b(t) + r2(t)𝒩(t)

r ≪ b

b(t) r (t)

β(t) = b(t)P−1(t)
ρ(t) = r (t)P−1(t)
m(t) = M(t)P−1(t)

M(t) = β(t)P(t) + β(t)P(t) + ρ2(t)P2(t)𝒩(t)

m(t) = β(t) + β(t)/P(t) + ρ2(t)𝒩(t)

m , β, ρ M, b, r β(t) P(t)
P(t)

P
ρ β

β
ρ

b, r β, ρ
μM(t) σM(t) t

μM(t) = b(t) = β(t)P(t)

σM(t) = b(t) + r2(t) = β(t)P(t) + ρ2(t)P2(t)
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I use the following estimators for  and  based on regular 1st and 2nd moments of 
mortality observations , using the same filter  defined in (4):


	 (9)


	 Normalization constant (  similar to  vs  in conventional variance estimators,

	 depends on  )


2.8 Indicative parameter 
I define parameter , indicative of the amount of additional mortality variability relative to Poisson 
variability:


	 (10)


When , weekly mortality exhibits only Poisson variability, without additional variability 

( ). For , additional weekly mortality variability exists via . At , the 
additional variability exceeds Poisson variability.

	 For , weekly mortality variability is below the amount possible by a Poisson model only, 
and no  exist to explain such dynamics. Real events causing  are temporal mortality 
correlations due to e.g. deterministic processes in the population, or data providers that 
interpolated missing data, etc. Also, estimator (10) will exhibit measurement noise leading to 

.

	 In this report, I will use plain  only for visual inspection, while statistics  over time will 
be used numerically; -estimator noise is minimized in  and revealed in .


3 Results 
Next follow experiments with simulations to test the proposed estimators, and experiments with 
real observed mortality for The Netherlands and its city Rotterdam, and from 30 European 
countries. Data was available from 2010-2022 [Cbs,Eur], except for Rotterdam 2019-2022 [Cbs]. 
The per-population paramaters  will be used to account for population changes over time.


3.1 Simulations 
Table 1 shows several mortality simulations with true and estimated  for several populations 

. Each simulation includes 3 years with seasonal changes via , and a yearly population 
growth of 0.5%:


	 (11)


μM(t) σM(t)
M(t) F

μM(t) = {F * M}(t)

σM(t) = C ⋅ {F * (M − μM)2}(t)

C ≈ 1.1 N N − 1
F

k

k (t) =
σM(t)
μM(t)

= 1 +
r2(t)
b(t)

= 1 +
ρ2(t)
β(t)

P(t)

k = 1
r = ρ = 0 k > 1 r, ρ > 0 k > 2

k < 1
r, ρ k < 1

k < 1
k (t) μk, σk

k μk σk

β, ρ

β, ρ
P Δβ

P(t) = P ⋅ 1.005
t

52

β(t) = β + Δβ ⋅ 2 cos 2π
t

52
+ ρ ⋅ 𝒩(t)
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I added the  to have , the estimated deviation of , match .


Table 1: Estimated model parameters for several 3-year mortality simulations.


For simulated data, indicator ’s range estimates always encompass true . The estimated  
captures both mean mortality and seasonal variations well, for populations  of 0.1M or more. 
Additional weekly variability  is estimated well for sufficiently large  or populations , or simpler, 

for , when  exceeds regular Poisson noise. Below that,  is overestimated, mistaking 
some Poisson noise for additional weekly variability (Table 1 shows it is not caused by seasonal 
variation , and, not shown, it is also not caused by yearly population growth).


2 σβ β Δβ

Simulation

10k 200 ± 30 0 1 183 ± 45 117 ± 24 0.9 ± 0.2

10k 200 ± 30 5 1.0 198 ± 51 114 ± 30 0.9 ± 0.2

0.1M 200 ± 30 5 1.0 198 ± 29 37 ± 9 0.9 ± 0.2

0.1M 200 ± 30 25 1.1 202 ± 32 42 ± 10 1.0 ± 0.3

0.1M 200 ± 30 50 1.5 199 ± 34 58 ± 12 1.4 ± 0.3

1M 200 0 1 200 ± 4 12 ± 3 0.9 ± 0.2

1M 200 ± 30 5 1 201 ± 28 13 ± 4 1.0 ± 0.3

1M 200 ± 30 10 1.2 199 ± 27 15 ± 3 1.2 ± 0.3

1M 200 ± 30 20 1.7 196 ± 29 20 ± 5 1.5 ± 0.4

10M 200 0 1 200 ± 1 4.1 ± 0.8 1.0 ± 0.2

10M 200 ± 30 0 1 198 ± 30 3.8 ± 0.7 0.9 ± 0.2

10M 200 ± 30 3 1.2 199 ± 28 4.8 ± 1.0 1.1 ± 0.3

10M 200 ± 30 5 1.5 198 ± 29 6.1 ± 1.5 1.5 ± 0.4

10M 200 ± 30 10 2.4 199 ± 28 10 ± 2 2.5 ± 0.6

100M 200 ± 30 5 3.7 198 ± 28 4.8 ± 0.9 3.7 ± 0.8

Baseline &

seasons


 ·106β

Additional 
variability


 ·106ρ

Estimation  ±  μ σ
Additional 
variability


 ·106ρ

Baseline &

seasons

±  ·106β Δβ

Population

P

Indicator

k

Indicator

k

k k β
P

ρ ρ P
k ≥ 2 ρ ρ

Δβ
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3.2 The Netherlands and Rotterdam 
The Netherlands is a country with a population of 17M people, and Rotterdam is one of its 
cities with 0.6M. Figure 2 shows mortality from 2010-2022 for The Netherlands, and 
2019-2022 for Rotterdam due to data availability, excluding the first few weeks of 2019 due to the 
processing tail of filter  in (4) and (9). Estimated baselines  neatly follow the overall shape of 
mortality . In The Netherlands, mortality has several peaks for influenza (Jan 2018) and covid 
(Mar 2020 and several later). Rotterdam shows no easily visible events.

	 At all times, a weekly mortality variability is visible. In Rotterdam, the weekly variability appears 
stronger due to its smaller population, Poisson noise is then relatively stronger, see e.g. (7) bottom 
equation for , where  is divided by .

	 In The Netherlands, indicator  varies between 1 and 2 during years 2010-2019, with only 
one bump to 4 during the Jan 2018 influenza wave. Since 2020,  has changed behaviour, starting 
with a bump to 9 in the first covid wave. In Rotterdam, indicator  varies slightly around 1, and 
starts to vary slightly more halfway 2021.


The Netherlands ( 17M)




Rotterdam ( 0.6M)




Figure 2: Weekly mortality in The Netherlands and its city Rotterdam, by observed , estimated 
baseline  and indicator . Note the different time scales due to data availability. 

Table 2 shows statistics. In The Netherlands from 2010-2019,  and thus additional 
weekly variability was always present, with an average magnitude exceeding that of Poisson 
variability. From 2020 onwards, mortality baseline  grew by about 12%, and variability almost 
doubled to , substantially and systematically higher than before. The ratio  grew 
from approx. 3% to 5%. For Rotterdam, Table 2 shows no significant mortality events in 2020, 
with baseline mortality  rising only from 2021 onwards by about 8%.


P ≈
P ≈

F β(t)
m(t)

m(t) β(t) P(t)
k (t)

k
k (t)

P ≈

P ≈

m(t)
β(t) k (t)

k = 1.5 ± 0.6

β
k = 2.7 ± 1.2 ρ /β

β
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Table 2: Statistics for The Netherlands and its municipality Rotterdam. The population size of 
Rotterdam is insufficient to reliably estimate additional mortality variability  (according to 

). 

3.3 Europe 
Table 3 shows ’s mean  and deviation  over time for 30 European countries in the period 
April 2017-December 2019, based on observed mortality from [Eur]:


	 (12)


Figure 3 illustrates the strong linear (Pearson) correlation of   with population size , and  with 
. Despite the non-linearity of (10), the limited ranges in (12) lead to linear correlations. Note also 

that these correlations are illustrative; the temporal mean  of , was used, and no weighting by 
population size was applied.

	 The take-away is that across European countries, there consistently is an additional weekly 
mortality variability with a magnitude of 2% to 4% times the mortality baseline.


Region


Netherlands 17M 2010-2019 163 ± 13 1.5 ± 0.6 4.8 ± 1.8 2.9%

2020-2022 185 ± 20 2.7 ± 1.2 8.9 ± 6.2 4.8%

Rotterdam 0.6M 2019 159 ± 12 1.1 ± 0.1 - -

2020 162 ± 15 1.0 ± 0.1 - -

2021 175 ± 19 0.9 ± 0.2 - -

2022 175 ± 13 1.0 ± 0.3 - -

Baseline &

seasons


 ·106β ρ /β

Population

P

Additional 
variability


 ·106ρ
Indicator


k

Time

Period


t

ρ
k < 2

k μk σk

β ≈ 198 ± 31 ⋅ 10−6

ρ ≈ 7.2 ± 2.0 ⋅ 10−6

ρ /β ≈ 3.3% ± 1.0 %

k2 P ρ
β

μ2
k k2
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Table 3: Results for 30 European countries, period Apr 2017-Dec 2019. Totals are weighted by 
population size. The  is measured only for 18 countries with . 

Country k

Austria 8.9M 175 ± 14 1.5 ± 0.5 6.5 ± 2.1 3.7%

Belgium 11.5M 181 ± 17 2.0 ± 0.9 8.0 ± 3.7 4.4%

Bulgaria 7.0M 293 ± 25 1.8 ± 0.7 11.5 ± 4.6 3.9%

Croatia 4.1M 243 ± 19 1.5 ± 0.4 11.8 ± 3.1 4.8%

Czechia 10.6M 199 ± 14 1.8 ± 0.7 7.7 ± 3.2 3.9%

Denmark 5.8M 178 ± 13 1.1 ± 0.3 - -

Estonia 1.3M 222 ± 17 1.1 ± 0.2 - -

Finland 5.5M 186 ± 12 1.2 ± 0.3 - -

France 67.3M 172 ± 14 3.2 ± 1.2 5.2 ± 2.1 3.0%

Germany 83.0M 215 ± 18 4.8 ± 3.0 7.7 ± 5.2 3.6%

Greece 10.7M 217 ± 15 2.2 ± 1.0 9.9 ± 4.3 4.6%

Hungary 9.8M 252 ± 24 2.1 ± 0.6 10.6 ± 3.2 4.2%

Iceland 0.4M 121 ± 7 1.0 ± 0.3 - -

Italy 59.8M 204 ± 19 3.9 ± 1.8 7.2 ± 3.4 3.5%

Latvia 1.9M 280 ± 23 1.2 ± 0.3 - -

Liechtenstein 0.04M 130 ± 18 1.0 ± 0.2 - -

Lithuania 2.8M 266 ± 22 1.4 ± 0.3 - -

Luxembourg 0.6M 132 ± 12 1.1 ± 0.3 - -

Malta 0.5M 139 ± 21 1.1 ± 0.3 - -

Netherlands 17.3M 167 ± 15 1.6 ± 0.7 5.1 ± 2.5 3.1%

Norway 5.3M 145 ± 10 1.1 ± 0.2 - -

Poland 38.0M 204 ± 15 2.8 ± 0.9 6.6 ± 2.0 3.2%

Portugal 10.3M 205 ± 27 2.0 ± 0.8 9.1 ± 3.8 4.4%

Romania 19.4M 255 ± 21 2.6 ± 0.7 9.2 ± 2.6 3.6%

Serbia 7.0M 275 ± 23 1.7 ± 0.4 11.0 ± 2.6 4.0%

Slovakia 5.5M 187 ± 14 1.5 ± 0.4 8.7 ± 2.8 4.7%

Slovenia 2.1M 186 ± 18 1.1 ± 0.2 - -

Spain 46.9M 170 ± 19 2.9 ± 1.1 5.5 ± 2.4 3.3%

Sweden 10.2M 164 ± 13 1.5 ± 0.4 5.9 ± 1.8 3.6%

Switzerland 8.5M 149 ± 11 1.3 ± 0.3 - -

Total 462M 198 ± 31 3.0 ± 1.1 7.2 ± 2.0 3.3% ± 1.0%

P  ·106β  ·106ρ ρ /β

ρ k ≥ 2

 of 10 12



Correlations in European countries

 
Figure 3: Correlations in European countries, illustrative, not weighted by population size. Indicator 

 versus population size  (Pearson coefficient R = 95%, 30 countries), and additional mortality 

variability  versus baseline mortality  (with R = 87%, 18 countries with ). 

4 Conclusions 
This report investigates the natural variability of mortality, which determines the thin line between 
excesses and normal variation within expectations. I propose a model for mortality’s weekly 
variability based on a Poisson model, driven by potential non-stationary influences that act 
nation-wide and fast, on time scales of a week.

	 The results revealed the presence of a significant amount of non-stationary influences that add 
to mortality’s weekly variability, with magnitude of 3%±1% (1% - 5% with 95% confidence) times 
baseline mortality, on top of the standard (Poisson) variability. This additional variability is 
consistently found across 30 European countries (462M people) during 2017-2019. A long-term 
analysis in The Netherlands (17M people) reveals the same variability between 2010-2019, with 
substantial increase since 2020 to approx. 5%. Mortality variance may thus very well itself be 
used as event indicator when variability is higher than expected.

	 The findings in this report are relevant for all models of mortality and its variability in general, 
and in particular for developments towards better excess mortality measurements. The additional 
variability found scales with both baseline mortality and population size in a different way 
compared to Poisson variability. For a typical mortality baseline of approx. 0.02% per week, the 
additional variability becomes dominant in populations above approximately 5M people.

	 A number of causes for the variability found were suggested, of which the most promising, 
temperature, will be investigated in a follow-up to this report. Finally, this study was limited in 
many ways, due to me, due to limited time as an independent researcher, and surely due to 
Nature’s inaccessible magical side [Bre]. 
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