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ABSTRACT

In this paperwe presenta combinationof threestepsto codea disparitymapfor 3D teleconferencingpplications First we
introducea newdisparitymapformat, the chainmap,which hasa very low inherentredundancyAdditional advantagesf
this map are: one single bidirectionalmap in steadof the usualtwo unidirectionalvector fields, explicit indication of
occlusions, no upper or lower bound on disparity values, no disparity offset, easy generation by d&padtgrsaandeasy
interpretationby imageinterpolatorsin a secondstep,we apply datareductionon the chainmap. The reductionis a factor
two, therebylosing explicit information aboutthe position of occlusionareas.An algorithm for image interpolationin
absencef occlusioninformationis presentedThe third stepinvolves entropycoding, both losslessand lossy. A scheme
speciallysuitedfor the chainmaphasbeendevelopedAlthoughthe codecis basedon a simple predictionprocesswithout
motion compensation, compression ratios of 20 (lossless) to 80 (lossy) can be achieved with typical teleconferencing image:
Theseresultsare comparableo thoseobtainedby complexschemesasedon 2D/3D motion compensatiomusing disparity
vector fields.

Keywords: disparity map coding, disparity map format, 3D teleconferencing, image interpolation

1. INTRODUCTION

In teleconferencingthe telepresencéeeling is enhancedsubstantiallyby the introduction of 3D images.In addition to
stereoteleconferencingthis implies the needfor disparity estimatiod® and image interpolatior>*"° We assumethat
disparity estimationis performedat the transmitterand image interpolation at the receiver. This allows for a low
complexity receiverin multiperson communicationsbut requiresthe coding and transmissionof the disparity map.
Disparity map codingis still a relatively new area.Tzovaraset al.*° provide an overview of different coding methodsfor
disparity vector fields.

In this paperwe will examinea combinationof threestepsto codea disparitymap.First we presenta new disparity map
format, the chain map, and examineits propertiesand redundancy Secondly,we will apply datareductionon the chain
map, loosing explicit occlusioninformation. A new image interpolationalgorithm is presentedhat doesnot needthis
information. The reductionalsolowersthe complexity of the disparity estimatorat the transmitter.Finally we investigate
both lossless and lossy entropy coding using schemes especially suited for the chain map.

2. DISPARITY MAP CONSTRAINTS

A disparitymapdescribesvhich pixelsin stereodmagesform pairsdescribingthe same3D scenepoint. Our constrainton
the disparity map are:

 Disparity vectors have a horizontal componentonly. All pixelsin onescanlineof the left imagecorrespondnly to
right image pixels on the same scanline. To achievealsigreocamerasetupwith paralleloptical axesis sufficient.In
the case of a converging camera set-up, a rectification process can bé®applied

» The ordering constraint is obeyed.This meansthat the from-left-to-right-orderof objectsis the samein the left and
right images. The ordering constraint may be violated when seétifesmall objectsat differentdepthsarerecordecby
two camera’swith largebaselineThis might occurin teleconferencingcenesy exception(a personreachesout his or
herhandin front of the camera’s)Many disparity estimationalgorithm$®’ needthe orderingconstraintjn which case
our constraint is not additional.



* In occludedareas,the disparity map carries no pseudodisparity information. Whenan objector partof it is visible
in only one of theimages,accompanyinglisparity vectorsdo not exist. Still one cangeneratgseudodisparity vectors,
pointing from the visible part in one image to the imaginary counterpartin the other image. For this one needs
sophisticated algorithms that exploit monocular depth auresprecamera’shatprovideadditionaldepthinformation.
In many caseshowever,pseudaodisparity vectorsare generatedn a postprocessingtepusing a linear or constanffill
operationon the calculatedreal disparity vectors**® Sincethe fill operationprovidesno additionalinformation, we
generate the pseudo vectors during image interpolation and exclude their presence in the disparity map.

3. ANEW DISPARITY MAP FORMAT: THE CHAIN MAP

A well known format for disparity mapsis the disparity vectorfield*°, sometimesexplicitly accompaniedy occlusion
labels. Although used very commonly, the vector field format has the following disadvantage.

Scene object surfaces that are normal to the caaxeesultin projectionsof the samesizein left andright image.We
call this normal objects.Whenan objectsurfaceis not normal to the cameraaxes,the projectionsin left andright images
have different size. We call this contractions. We define a left contraction as an object that is thegeftimagethanin
the right image. An object that is visible in the left image, but not in the right image, is defined as a left occlusion.

A singleright-to-left vectorfield is unableto indicatethe differencebetweerieft occlusionanda strongleft contraction.
In both caseghe disparityvectorsare diverging, leaving pixelsin the left imageunpaired.This problemcanbe solvedby
using two field$”®, but that introduces much redundancy.

In steadof vectorfields we proposeto usea new format, the chainmap. Figure 1 showsthe chain map format of one
scanlineof a disparitymap. For clearnessthe left figure showsthe disparity vector representatior® and the right figure
shows the disparity path representativh’
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Figure 1: The chain map format of a disparity map

Starting at the first pixel on correspondindeft and right image scanlines,we indicate whethera disparity vector is
presentetweerthe two pixels (M, a matchingpair) or not (M). Thenwe takea 1-pixel horizontalstepin one of the two
scanlinegL or R) and againindicatewhethera vectoris present,etc. This continuesuntil the edgein both scanlinesis
reached.

All possibledisparitymapsunderour constraintdit in the chainmap.Occlusionsand objectsareindicatedexplicitly by
the chainmap.The matchbits M indicatenormalor contractedbbjects.In the caseof contractedobjectsit is possiblethat
single pixels are part of more than one pair. The matchvbitsdicate occlusions.

The step bits L/R have the following meanindeff imagepixel xI,y andright imagepixel xr,y form a disparity pair, we
definedisparityasd (x) = xl - xr, with x = xI + xr. The pixel co-ordinatesx,y correspondo the imageof animaginary
centrecamerathat hasdoublehorizontalsize. Now we define S asthe continuousderivativeof d with respecto x, and S’
as the discrete derivative, valued either -1 or +1:

ad o
X)=— , S'x)=— d 1
S = () =+ ¢
The orderingconstraint,describedn section2, togethemwith the definition of d andx, ensureghat|§ < 1. Thereforethe
discretederivative operatordoesnot become‘saturated’ (happenswhen |§ = 1 while |S’| = 1) and the integral of S’
resemblesl closely. On the other han8andS’ do not resemble each other on local scale, since the quantisation ri§ise in
has a magnitude of the same order as the st is present i§'.



EachL stepbit incrementsd by one,andeachR stepdecrementsl by one.Both stepsincrementx by one. The stepbits
indexed byx are equal t&'(x).

A constant disparity resulta analternatingseriesof +1 (L) and-1 (R) stepbits. At pixel scale the discretederivativeis
very non linear. On a slightly larger scale,the operatoris linear in the sensethat the integral of Sresembled closely.
Thereforelinearfiltering like smoothingandinterpolationcanbe performedeasilyon chainmaps.Filtering in this domain
is equal to permutation of the step bits.

Advantages of the chain map are

* One bidirectional disparity map

» Explicit indication of occluded, contracted and normal objects

» No upper/lower bounds or offsets for disparity values

» Easy generation by estimators that use dynamic programming, close connection with disparity path representation
» Easy interpretation by interpolators

In the next sectionswe will analysethe redundancyof the stepbits of the chain map and provide meansto discardthe
match bits.

4. REDUNDANCY OF THE CHAIN MAP

In this sectionwe will examinethe redundancyof the chain map stepbits. The resultswill be usedin the designof the
entropy codec in section 6.

We divide the analysisin threeparts.First we examinethe redundancyinherentto the chainmap format, without using
a priori knowledgeaboutthe scenedisparity. Thenwe analysethe caseof boundeddisparity range,causeddy a particular
camerasetupand/orglobal a priori knowledgeaboutthe scene Finally we assumehat disparity is locally smoothwithin
objects.

4.1 Redundancy inherent to format

If N is the number of pixels on one scanline, then every scanline of the chain map co2distsneditchbits and2N-2 step
bits. The total number of bits required for one scanline is tNu3,4vhich is about 4 bitger pixel measuredn original left
or right image size. Because the number of L's and R's ar&litthe total number of possible chain maps is:

(2N - 2)! 2N-1
(N -1)!?

Taking the 2log gives the minimum numberB of bits requiredto code a chain map. Table 1 gives the redundancy
1-B/(4N-3) for differentN, obtained using Stirling’s approximation formula:

Inx!z(x+1)lnx—x+lln2n +i +O(i2) 2
2 2 12x X
N 4AN-3 B Redundancy
10 37 35 0.054
100 397 393 0.010
256 1023 1017 0.0039
720 2877 2872 0.0017

Table 1: The inherent redundancy of the chain map

For the internationalstandardmageformat CCIR601/656N equals720 andthe inherentredundancyof the chainmapis
less than 0.2 %.
4.2 Bounded disparity range

When we have a priori knowledge abthe camerasetupand/orscenedisparity,we canobtainupperandlower boundsfor
the disparity values.In the caseof a parallel camerasetupwithout shifted lenses disparity will be always positive. The



chainmaphasno boundsby nature ,which increaseghe relativeredundancyTable2 givesthe resultsfor commonvalues
of N andupper/lowerbounds.The resultsare obtainedby an exactcalculation of the numberof possiblechainmaps,using
1500 bits precision integers.

N Range 4AN-3 B Redundancy
256 0...256 1023 1009 0.014
256 100 ... 200 1023 810 0.208
256 10...20 1023 972 0.050
256 -5...45 1023 994 0.028
720 0...720 2877 2862 0.005
720 100 ... 300 2877 2663 0.074
720 10...30 2877 2828 0.017
720 -10 ... +10 2877 2854 0.008

Table 2: The redundancy of the chain map, bounded disparity range

Clearly, the redundancyis very low aslong as zero disparity is within the allowed range,evenfor very small disparity
ranges. When zero is not included in the rangergtdandancymay becomequit large. With Q = |dJmin , the chainmapwill
start and end with a series@fequal step bits an@ match bitsm . This is easily removed by an external codec.

4.3 Object surface smoothness

Within objectsurfaceswe assumedisparity to be smoothin both the spatialandtemporaldomain.For everypointin the
surface we can linearise the disparity in a small neighbourhood. Taking the origin as an example, we define:

d(x,y,t) =0+ px +qy +rt +f(x,y,t) ®)

Hered is the disparity of pixel x, y attime t in the centreimage. The variableso, p and g correspondo the depthand
orientationof the objectsurfaceat t=0. The variabler correspondso objectmotion orthogonalto the line betweenobject
and optical centre of an imaginary centre camera(which is normal motion in centreimage). Justas in optical flow
calculationsy is a function of, g and centre image motion vectors. The time functi@presents object motidawardsor
from the centre camera optical centre’s. Combining (1) and (3) gives:

of
S(X’y1t) = p+_ (4)

X
Sowithin objectsurfacesS providesinformation abouthorizontal orientationof that surfaceand horizontaldifferencesin
motion towards or from the camera optical centre. The latter corresponds torotgtionin a sceneplanethatis projected
onto one scanline in the left, right and centre images.

Effectively, due to the missing taking the continuous derivativof the disparityfield d incorporatessomeform of first
order motion compensated coding. This argument halkisfor the chainmapstepbits S'. Accordingto (4) we canpredict
Svery easilyfrom Svaluesin a local spatialor temporalneighbourhooddueto the constantp. This is not the casefor S,
since the signal to noise ratio is about one, see section 3. Although the local error in pr8tgtépdits is largethe error
measuredy the integral of S" and d can be very small. So for lossy coding a predictorfor single stepbits might prove
useful.

A single stepbit predictorcan also be useful for losslesscoding. This is the casewhenthe estimatorreturnsa single
disparity vectorfield, which is transformednto a chain map by postprocessingBetweentwo equalconsecutivedisparity
vectorsboth LR and RL step bits can be presentin the chain map, but the postprocessomight use only one of the
combinations.

At objectedgesthe linearisation(3) is not valid. We expectocclusionareasthere,correspondingo |§ = |S* | = 1. This
resultsin relatively long runs of equalstepbitsin S' . Theseare very easily predictableusing a spatial predictor. The
motion compensatiomrgumentoesnot hold when(3) is not valid, soa temporalpredictorperformsbetterin combination
with motion compensation.

Concluding, the chain map exhibits some form of first order motion compensated waatthimgobjectsurfacesFor those
surfaces,exact prediction of a single stepbit of S is difficult due to the low signal to quantisationnoise ratio of S'.
However, spatigpredictionof stepbits is possiblefor lossycodingandin somecasesgdependenbn the disparity estimator,
for lossless coding. At object edges, also a (motion compensated) temporal predictor can be applied.



5. IMAGE INTERPOLATION USING A REDUCED CHAIN MAP

In this section we will present an image interpolation scheme that does not need theitmatthe chainmap. Therefore,
a datareductionof a factortwo is obtained.The remainingnumberof bits in the reducedchainmapis 2N-2, slightly below
2 bits per pixel.

Using the reducedchain mapit is not possibleto distinguishocclusionsfrom contractionsexplicitly. However,image
interpolationalgorithmsnormally needthis informatiort*°% For the luminancely, of a pixel in the interpolatedimage,
mostinterpolationalgorithmsuseimagedatafrom eitherleft or right imagein occlusionareasand a weightedaverageof
both images in object areas:

I, =W O, +WsO,  withW +W, =1 5)

In left occlusiondNk = 0, in rightocclusionsWg = 1 andin objectareasWg = 1/2 + P, with P equalto the positionof the
virtual intermediate camera:

1
(LEFT) - <Ps+

N =

(RIGHT) (6)

An extensionto this is to allow for a local gradualchangein Wy at transitionsbetweenobjectand occlusionsto avoid
luminance discontinuitiés

We proposea new algorithm that generatesimilar weightsbasedon the reducedchain map, without using explicitly
object-occlusiontransition information. Since the chain map does not provide pseudodisparity vectors, the image
interpolationalgorithm hasto calculatethem. We usethe linear fill method,becausen this caseocclusionareasare
handled as contractions.

For the calculationof the luminanceweightsWy andW_ we proceedasfollows. First we determinethe numberNg of R
steps in a symmetric window of lendtliqow around each match bit position. We define

N
Sate=2—R -1 7
(7

L\NindO\N

In a left occlusionor very strongleft contraction,State = -1, andin a right occlusionor very strongright contraction,
Sate = + 1. We calculate the weigiz according to:

W; =W + AW [Bate (8)

and

w:%+p AW =P ©)

NP

The AW part accountdor the automaticweight adaptationaccordingto contractionand occlusionareas.Due to the non
zero window lengthLuiniow , the small scalguantisatiomoiseof the stepbits S’ is removedandgradualweighttransitions
are provided avoiding luminance discontinuifies

When the reduction of the chain map is performedwithin the disparity estimationprocess,the complexity of the
estimatordecreasesubstantially For illustration, figure 1 showsthe disparity path obtainedby a typical estimatorusing
dynamic programming®. In chain map terms, the middle three matchesof the disparity path enclosetwo occlusions
(indicatedby two M bits atthe endof the chainmap).A moreplausibleinterpretationwould be that the matchesepresent
a continuouspath. To distinguishbetweenthesesmall holesandreal occlusions somethresholdon the size of the hole is
necessary With the presented interpolation algorithm and reduced chain map this decision step is not needed.

6. ENTROPY CODING

The disparity maps of natural scenes are a small subset of all possiblesospsypycodingcanbe usedfor compression.
Disparity map codingis still a relatively new area.Tzovaraset al.*° provide an overview of different coding methodsfor



disparity vector fields. We will examine both lossless and lossy compression schemes, specialfgrsthitectducedchain
map.

Figure 2 showsa standardcoding systemin which we replacedthe quantiserby a permutator explainedin section6.2.
Our approach is based on spatial prediction of step bits, thus without using motion compensation.

The coderoperatesn the following way. Basedon all previousreconstructegtepbits S*, a predictionS’ is obtainedfor
the current source step 9t The prediction erroA” canbeeither-2, 0 or +2. Thereal predictionerrorsA” aretransformed
by the permutatorto lossy predictionerrorsA’, to be transmitted Basedon S’ and A" , the reconstructedstepbits S° are
obtained. In the lossless case= A" andS* =S

For transmissiorof non zeroA', the sign of A" canbe recoveredrom S, availableat the decoder.So the transmitted
error signal hasa binary form, hopefully including many zero’s. A losslessadaptiveHuffman codecis used,with input
symbols equal to the lengths of zero-runs.

a 3l—f’t'V‘f
p» Huffman
decoder

adaptive
—p Hut%na:x Channel
cncoder

Reduced

"
\ A YaN
chain map + ®
source S

r P S
Encoder Decoder
Figure 2: The coding system
6.1 Lossless coding
As predictor we use a simple spatial predictor that takes the step bit from the previous scanline:
SP(x,y,t) =SR(x,y - 1,t) (10)

For the top scanline,we take the top scanlineof the previousframe. For the top scanlineof the first frame we take the
alternating step bit series L R L R etc.

This predictorhandleghe redundancydueto a boundeddisparityrange,discussedn section4.2, andthe occlusionarea
and estimator redundancy, discussed in section 4.3.

In this case the permutator is not presenfA'se A” andS® =S

6.2 Lossy coding

For lossycodingin chainmaps,we usea combinationof two approachesThefirst is a K-fold vertical subsamplingof the
reducedchain map as a preprocessingstep. Since many block basedalgorithms* createa full size disparity map by
interpolating a sparse map, the degradation due to the codec subsampling/interpolation processes may be very small.

Secondlywe addthe permutatotto the losslessystem The effect of the permutatoris that onescanlineof St is globally
the same aS, but with groups of step bits permuted locally. The lodsie to the permutator is defined as:

L=A" -A° (11)
For the reconstruction erré” it follows from figure 2 that:
AR =St -S=L (12)

Our permutator algorithm works as follows. First we introdacenlengthstring notationfor onescanlineof the A” and AT
errors:



{000-20+200Q0 2+ 20p - { samw0} (13)

The arrows betweenthe runlengthsindicatesthe sign of the nonzeroerror. Our algorithmis basedon the following two
lossy transitions:

(at nt b)d
0 b+2
(aTnib)% (a*n+b+2) (14)

In the runlengthstring we searchfor groupsof threerunlengthsand two oppositearrows, using a specificn. Thenwe
replacethe groupby onenumber therebyreplacingthreerunsby one.Table 3 showsan examplewith n = 2. Notethatthe
prediction errors in step bits 2 and 4 are not transmitted and thus not corrected, while the prediction errdygsi6 stegp
7 arecorrected.In the end,comparingS and ¢, we seethat stepbits 2 and 4 havebeenpermuted.This hasonly local
influence on the disparity values.

Step bit 0 1 2 3 4 5 6 7
S -1 +1 -1 +1 +1 +1 -1 +1
s -1 +1 +1 +1 -1 +1 +1 -1
A" 0 0 -2 0 +2 0 -2 +2
AT 0 0 0 0 0 0 ) +2
S -1 +1 +1 +1 -1 +1 -1 +1

Table 3: An example of the lossy coding algorithm witm=2

From (1) it follows that the error in the reconstructed dispatisyequal to the integrallongx of theerror AT in the chain
map. A single application of (13) results in a uniform disparity error of -2 or +2 in an interval of léBgiixels (thereare
2N step bits and\ pixels on one scanline).

Our algorithm takesA® as initial runlengthstring. Then we apply the transition rules, searchingfor the appropriate
groupsfrom left to right. This is donefor n betweenl and Ty« . We startby 1 to ensurethatthe smallestrun transitions,
causing the least damage, are performed first. The remaining runlengths si¥ing is

7. EXPERIMENTS

In this section we will first discuss the used test sequences and evaluation procedures, followed by our results.

7.1 Test sequences

Figure 3 showsthe first frame of the usedimage sequence$/AN, HEAD and AQUA, left position. Table 4 provides
additional information.

G G el

Figure 3: First left frame of MAN, HEAD and AQUA sequence



Sequence name | X*Y size frame frames/second | Disparity range Remarks
MAN 384*384 25 30...110 Teleconferencing situation
large camera baseline
HEAD 256*256 25 -5...+15 Synthetic medical image,
with reference mid positiof
sequence
AQUA 720*576 25 -40 ... +16 RACE DISTIMA test
sequence, provided by
CCETT France

Table 4: The used test sequences

7.2 Evaluation scheme

To evaluatethe original andreconstructedlisparityfield, we usethe following procedureseefigure 4. After estimationof
the disparity field D, we generate an intermediate WWwat centreposition,basedon the original left L andright R image
sequencelor the HEAD sequenceM’ can be comparedto the available original mid position sequenceM. For all
sequences, we reconstruct left L’ and right R’ images sequences, performing extrapolation on M’ using D.

After that, we codeD andafter decodingwe obtainthe reconstructed*. With D* we repeatthe procedurestatedabove
and obtain M*, L* and R*. These can be compared to L, R and M (HEAD sequence) or M’ (MAN and AQUA).

L R L DR D M' D L D*R D* M*
v \ 4 vVVvY v v \ 4 vVVvVY \ 4 v
Disparity Image Image Disparity Image Image
estimation|  interpolation|  extrapolation coding interpolation|  extrapolation
\ v \ \4 v v v v
D M' L' R' D* M* L* R*

Figure 4: Dependencies between original, reconstructed and coded sequences.

Our disparity estimatoris basedon the algorithmof Cox etal?, p 547, working on blocksof 4*4 pixels ratherthansingle
pixels. The algorithm outputsa disparity vector field, with valid vectorsat eachfourth scanline.Thenthe vectorfield is
transformedo a reducedchain mapandinterpolatedto a densemap. Figure 5 showsthe reducedchain maps,with each
luminancevalue determinedby two stepbits: RR = black, LR = gray,LL = white. The RL combinationis not used,see
section 4.3. The disparity range was always set including zero.
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Figure 5: First frame reduced chain maps of MAN, HEAD and AQUA sequence
Our interpolationalgorithmis describedn section5. We useLyingow = 16. Imageextrapolationis performedin the same
way as interpolation, but without the need to determine interpolation weights (only one source image).

Objective comparisonof reconstructedmage A and original image B is done using the PSNRwith normalisationto
maximum luminancéyax = 255:



|2
MAX

(IA_IB)2

NPixels all pixels
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7.3 Coding results

All resultsare basedon the first five framesof eachtest sequenceTable 5 gives the resultsfor losslesscoding, with
reconstruction PSNR’s and bitrates. The bitrates are in bits per pixel and kbits per secamnjiessiomatio is about5.
The compressioris possibledue to the spatial redundancyat the occlusionareas(black and white in figure 5) and the
redundancy of our estimator, see sections 4.3 and 7.2.

For the losslesscase, all degradationof the reconstructedimagesis due to the disparity estimation and image
interpolation processes. Subjectively, all reconstructed images differ only very stightharedo the original images.The
reconstructedMAN sequence$ook very good, with very small artefactspresentonly at the ears(occlusionareas).The
reconstructed HEAD sequences differ almost unnoticeabletfieimriginal sequencesl he reconstructeddQUA sequences
look good, but slightly smoothed.

Sequence PNSR PSNR PSNR bits per kbits per
L'/L M’/ M R'/R pixel second
MAN 39.77 - 39.39 0.366 1349
HEAD 32.07 30.19 32.34 0.385 631
AQUA 27.94 - 27.90 0.310 3214

Table 5: Lossless coding results

Table 6 gives the resultsfor lossy coding. Subjectively,we found the quality if the MAN M* image at 0.180 bpp
unacceptablewhile the other two resultslook slightly betterthan M’. This can be explainedby the choice of K, that
matchego the fourfold subsamplingof our disparity estimatorin the secondandthird results.On the other hand,all M*

resultfor the HEAD sequencaeliffer only just noticeablefrom M. Thethird HEAD resultshasa compressioriactor of 300
with respecto an uncodedreducedchainmap,and 1200with respectto an 8 bit disparity vectorfield. All AQUA results

look good, although slightly smoothed as in the lossless case.

Sequence Tmax K vertical PNSR PSNR PSNR bits per kbits per

transitions | subsampling | L*/L M* [ M’ R* /R pixel second
MAN 50 1 37.59 42.68 37.65 0.180 663
MAN 10 4 39.20 46.38 38.78 0.128 472
MAN 20 4 38.80 44.89 38.48 0.101 372
HEAD 10 4 30.65 | 29.88 (to M)| 30.59 0.083 136
HEAD 40 8 29.94 | 29.57 (to M)| 29.89 0.018 29
HEAD 80 16 29.28 | 29.06 (to M)| 29.28 0.0067 11
AQUA 10 4 27.47 31.64 27.34 0.087 902
AQUA 20 4 27.31 30.62 27.18 0.060 622
AQUA 40 4 27.02 29.34 26.87 0.037 384

Table 6: Lossy coding results
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Figure 6: First frame of MAN sequence, D* (0.101 bpp), M’ and M* image

8. CONCLUSIONS

We havepresented combinationof threestepsto codea disparitymapfor 3D teleconferencingpplicationsThe first step
is the introductionof a new disparity map format, the chain map. We showedthat the chain map hasvery low inherent
redundancyAdditional advantagesre: onesinglebidirectionalmapin steadof the usualtwo unidirectionalvectorfields,
explicit indication of occlusions,no upperor lower bound on disparity values,no disparity offset, easy generationby
disparity estimators and easy interpretation by image interpolators.

In a secondstep,we applied datareductionon the chain map. The reductionis a factor two, therebylosing explicit
information aboutthe position of occlusionareasWe presentedan algorithm for automaticocclusiondetection,usingthe
reduced chain map.

The third stepinvolves entropycoding, both losslessandlossy. A schemespeciallysuitedfor the chain map hasbeen
developedAlthough the codecis basedon a simple spatialpredictionprocesswithout motion compensationgompression
ratiosof 20 (lossless}o 80 (lossy)canbe achievedor typical teleconferencingmages(with referenceto an 8 bit disparity
vectorfield). Theseresultsare comparableo thoseobtainedby complexschemesasedon 2D/3D motion compensation
using disparity vector fields.
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